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Circulating nutrients and metabolites provide useful indica-
tors of biological processes in the human body, and their 
concentrations in biofluids have been used for clinical risk 

assessment, diagnosis, prognosis and monitoring of therapeutic out-
comes1–4. Abnormal concentrations of circulating metabolites and 
nutrients are associated with health conditions such as metabolic 
syndrome and cardiovascular disease. Wearable devices5–14, such as 
wearable sweat sensors15–23, have the potential to capture changes in 
health rapidly, continuously and non-invasively. For example, chlo-
ride concentration in sweat is the gold standard to diagnose cystic 
fibrosis20, and glucose concentration in sweat is being intensively 
explored for diabetes management16,20,24.

Current wearable sweat sensors are primarily focused on a lim-
ited number of electrolytes and metabolites monitored via ion-
selective sensors or enzymatic electrodes18,19,25. Among the analytes 
for which wearable sensors do not exist are uric acid (UA) and tyro-
sine (Tyr). UA is a risk factor for cardiovascular disease26,27, type 2 
diabetes28,29 and renal disease30, and has been widely used in clinical 
settings for the management of gout31–33, the most common inflam-
matory arthritis affecting tens of millions of people worldwide34. Tyr 
is a conditionally essential amino acid involved in brain signaling 
and in the production of dopamine and stress hormones (for exam-
ple, noradrenaline and adrenaline)35. Abnormal Tyr concentrations 
are linked to metabolic disorders such as tyrosinemia36,37, liver dis-
eases37, neuropsychiatric and eating disorders38,39. Measurement of 
serum UA and Tyr is well established for metabolic and nutritional 
management1,28,31,38. However, studies on sweat UA and Tyr are 
scarce40,41, and their use for dynamic health monitoring and person-
alized intervention has not been investigated. Measurement of UA 
and Tyr in sweat is challenging because of their low concentrations.

We designed our sensor to address the main technological 
challenges. Microfluidics is essential for on-body sweat sampling 
to minimize sweat contamination and evaporation from the skin 
and to provide high temporal resolution of sweat dynamics19,42,43. 

Most reported wearable microfluidic platforms are based on sili-
cone elastomers, which require complicated fabrication processes 
and expensive microfabrication facilities5,15–17. Considering that 
scalable manufacture is crucial for widespread implementation of 
wearable sensors, a promising fabrication technology is CO2 laser 
engraving, which may allow rapid engraving of patterns in ambient 
conditions and reduce personnel training and process optimization. 
Multimodal sensing of molecular analytes and vital signs provides 
a more comprehensive perspective on physiological conditions15,44, 
but the incorporation of both chemical sensing and physical sens-
ing onto a wearable device remains challenging. This process usu-
ally requires integration of different materials and layers, which may 
hamper the wearability and sensing accuracy of the device. The use 
of CO2 laser-engraving technology has not been used to fabricate a 
multimodal wearable system.

Our sweat sensor is entirely laser engraved to facilitate scalable 
manufacture and flexibility for the wearer’s comfort. It enables wire-
less continuous monitoring of UA, Tyr and vital signs (Fig. 1a). It 
consists of a highly sensitive laser-engraved graphene-based chemi-
cal sensor (LEG-CS) for monitoring low concentrations of UA 
and Tyr, multiplexed LEG-based physical sensors (LEG-PS) for 
monitoring temperature and respiration rate and a laser-engraved 
multi-inlet microfluidic module for dynamic sweat sampling. We 
validated the system against gold-standard assays and in physically 
trained and untrained subjects and evaluated its potential for moni-
toring gout.

Results
Design of the entirely laser-engraved sensor for multimodal 
monitoring. A CO2 laser-cutting machine is used to fabricate all 
key components of the sensor: the LEG-CS, the LEG-PS and the 
multi-inlet microfluidic module (Fig. 1a). The system contains five 
layers, including multiplexed sensors scribed on a polyimide sub-
strate, microfluidic channels patterned on a double-sided medical 
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adhesive and inlet-engraved polyethylene terephthalate (PET) and 
medical adhesive layers (Fig. 1b and Supplementary Fig. 1). As 
sweat flows into the system, the LEG-CS measures the dynamics 
of sweat UA and Tyr while the LEG-PS measures skin temperature 
and strain-related physiological patterns (for example, respiration 
rate or heart rate) continuously (Fig. 1c,d). In addition, sweat loss 
and sweat rate can be obtained with the circular patterns of micro-
fluidic channels. Two laser-engraving modes are used: raster mode 
is utilized for chemical sensors while vector mode is used for micro-
fluidic patterns and physical sensors (Supplementary Figs. 2 and 3). 
Such multimodal microfluidic sensor patches can be prepared at a 
large scale (Supplementary Fig. 4). The resulting LEG structures are 
characterized using Raman and X-ray photoelectron spectroscopies 
(Supplementary Figs. 5 and 6). The disposable patch is connected 
to a reusable flexible printed circuit board (FPCB) (Fig. 1d–f). The 
system-level block diagram in Fig. 1e and the circuit diagram in 
Supplementary Fig. 7 illustrate the flow of electrical signals in the 
electrochemical and physical sensor measurements. For chemical 
sensing, the preprogrammed microcontroller generates the desired 
stimulation waveform (smoothened by an analog low-pass filter) to 
apply a specific sensing voltammogram on the electrodes through 
an external digital-to-analog converter. The resulting current 

response is amplified and converted to voltage by a transimpedance 
amplifier (TIA) and read by an analog-to-digital converter (ADC). 
Differential pulse voltammetry (DPV) is chosen here to evaluate 
ultralow-level sweat UA and Tyr on the basis of the amplitude of 
the oxidation current peak (Fig. 1g). The responses of the physical 
sensors are acquired through voltage dividers and the ADC. The 
acquired data are wirelessly transmitted to the user device over 
Bluetooth for further analysis.

Characterization of the LEG-based UA and Tyr sensor. Owing to 
its unique electrochemical properties arising from the fast electron 
mobility, high current density and ultralarge surface area, graphene 
is an appropriate candidate for building high-performance sensors 
to detect ultralow levels of electroactive analytes in body fluids. 
Laser cutting has been used to directly obtain graphene structures 
from a variety of substrates toward energy storage and fluid capture 
applications45–47. Here we manufactured highly sensitive LEG-CS on 
polyimide via raster mode (Fig. 2a–d and Supplementary Fig. 2). 
The three-electrode LEG-CS could selectively catalyze the oxidation 
of UA and Tyr at specific potentials (Fig. 2b). After optimization on 
the basis of the DPV peak amplitudes of UA and Tyr in the stan-
dard solutions (Supplementary Fig. 8 and Supplementary Table 1)  
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and electrochemical impedance spectroscopy (Supplementary  
Fig. 9), the electrocatalytic activity and reproducibility of LEG-CS 
for direct oxidation of UA and Tyr at physiological concentrations 
had sensitivities of 3.50 µA µM−1 cm−2 and 0.61 µA µM−1 cm−2, and 
low detection limits of 0.74 µM and 3.6 µM, respectively (Fig. 
2e,f and Supplementary Fig. 10). Two distinct current peaks at 
~0.39 V and ~0.64 V from the DPV scans correspond to the oxi-
dation reactions of UA and Tyr, respectively. The LEG-based UA 
and Tyr sensor shows excellent selectivity over other analytes 
in sweat at physiologically relevant concentrations48 (Fig. 2g–i, 
Supplementary Note 1, Supplementary Table 2 and Supplementary 
Figs. 11–15). The LEG-CS displays superior electrochemical per-
formance over commercial glassy carbon, screen-printed carbon 
and gold electrodes (Fig. 2j). Moreover, it enables direct detec-
tion of UA and Tyr in raw body fluids (that is, sweat and saliva) 
(Fig. 2k,l). The response of UA and Tyr sensing can be wirelessly 
recorded using the as-designed FPCB (Supplementary Figs. 16 and 
17). Although we focus on detection of UA and Tyr in this work, 
LEG-CS is able to detect ultralow levels of other electroactive 
molecules such as ascorbic acid and dopamine (Supplementary  
Fig. 18). The LEG-CS is mechanically flexible, fully compliant 
with the skin and exhibits mechanical and electrochemical stabil-
ity (Supplementary Fig. 19).

Design and characterization of the LEG-based vital-sign moni-
tor. The LEG has unique properties for designing resistive physical 
sensors: as the temperature rises, its conductivity increases owing to 
increased electron–phonon scattering and thermal velocity of elec-
trons in the sandwiched layers49 (Fig. 3a); when an external strain 
is applied, its three-dimensional porous structure is compressed, 
resulting in decreased resistance (Fig. 3b). Here the LEG-based tem-
perature and piezoresistive strain sensors are fabricated in vector 
mode (Fig. 3c,d and Supplementary Fig. 2). Both material morphol-
ogy and sensor layout are important in achieving the desired sensor 
performance: the fiber-like structure resulted from a high dose of 
local laser power (Fig. 3d and Supplementary Fig. 20) coupled with a 
straight-line design (strain sensor) yields the highest strain response; 
the compact structure (Fig. 3c) coupled with serpentine line design 
(temperature sensor) is less susceptible to strain variations (Fig. 3e). 
The temperature sensor shows a fast, accurate and stable response 
to temperature variations with a sensitivity of −0.06% °C−1 and 
a low detection limit of 0.051 °C (Fig. 3f–h and Supplementary  
Fig. 21), which indicates the negative temperature coefficient behav-
ior of the LEG. The strain sensor is fabricated at a low laser speed for 
large strain response and high stability (Fig. 3i,j and Supplementary  
Fig. 22), which is ideally suited for accurate monitoring of res-
piration rate (Fig. 3k) and heart rate (Supplementary Fig. 23), as 
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validated with commercial vital monitors (Supplementary Fig. 24). 
After 10,000 bending cycles, the flat-state resistance of the strain 
sensor remains stable (Supplementary Fig. 25). The temperature 
and strain sensor response can be accurately monitored by the 
FPCB (Supplementary Fig. 26). Considering that the response of 
the UA and Tyr sensor can be influenced by temperature variations 
(Fig. 3l), the temperature sensor readings could be used for real-
time chemical sensor calibration during on-body use.

Design and performance characterization of the laser-engraved 
microfluidics. Laser engraving enables rapid bulk manufacturing 
of microfluidic devices50. The microfluidic module is fabricated 
in vector mode to fully cut through double-sided adhesives (Fig. 
4a,b). The use of microfluidics enhanced the sweat sampling pro-
cess and achieved higher temporal resolution for wearable sens-
ing by constantly supplying newly secreted sweat to the sensor. In 
response to inflow of solutions at a new solute concentration, the 
time taken for the solute concentration in the reservoir to adjust to 
the new concentration (referred to as the refreshing time hereafter) 
is a key performance indicator of the microfluidic module. We used 
numerical simulations to determine the effects of the inlet number 
and flow rates on the refreshing time (Fig. 4c,d). For the case of ten 
inlets, with an experimentally measured sweat rate (1.5 µl min−1) as 
the inlet flow rate, the refreshing time taken to reach 90% of the 
new solute concentration was around 2.5 min, for a change of solute 

concentration from 20 µM to 80 µM (Fig. 4e). During the on-body 
trials, the microfluidic patch effectively sampled sweat with high 
temporal resolution (Fig. 4f and Supplementary Fig. 27). Moreover, 
it monitored sweat rate or sweat loss on different body parts through 
optical image analysis19 (Supplementary Fig. 28; Methods). Wireless 
and continuous sensing capabilities of the microfluidic-based sen-
sor are performed via continuous analyte solution injection at 
physiological sweat rates (Fig. 4g–i). The sensor patch reliably and 
continuously measured the UA and Tyr levels (±0.49% and ±1.07%, 
respectively) through successive DPV scans over a 15-cycle period 
(Fig. 4h and Supplementary Fig. 29a). When the input solution was 
switched from 20 to 80 µM for UA and from 50 to 200 µM for Tyr, 
the patch took less than 3 min to reach a new stable reading with a 
hysteresis of ~1 min (Fig. 4i and Supplementary Fig. 29b), indicat-
ing the high temporal resolution of the microfluidic sensing system. 
As illustrated in Supplementary Fig. 30, with a 45-s scan cycle every 
2.5 min, the microfluidic system showed very stable readings for UA 
and Tyr sensing during five successive scans (±1.25% and ±3.24 %, 
respectively) even when the flow rate was as small as 0.25 µl min−1, 
indicating that the molecular depletion in the confined reservoir 
during DPV scans will not affect the sensing accuracy.

In vivo system validation of the wearable sensor. The fully inte-
grated system could be comfortably worn on different body parts 
(Fig. 5a). Real-time measurement of sweat UA and Tyr, respiration  
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rate and temperature from the neck of a healthy individual in 
a controlled cycling exercise was demonstrated (Fig. 5b and 
Supplementary Fig. 31). The temperature increased initially and  
stabilized after 600 s and the respiration rate (obtained via fast 
Fourier transform as shown in Supplementary Fig. 32) followed 
similar trends. On the other hand, a decreased trend in sweat UA 
and Tyr concentrations was observed, which is likely attributable 
to profuse sweat secretion40. Varied UA and Tyr secretion at differ-
ent locations was observed (Fig. 5c,d and Supplementary Fig. 33). 
We determined the accuracy of the wearable sensor for analyzing 
raw sweat samples using high-performance liquid chromatog-
raphy (HPLC) and commercial colorimetric assay kits (Fig. 5e,f, 
Supplementary Tables 3 and 4, and Supplementary Figs. 34–36) and 
obtained high Pearson correlation coefficients of 0.963 and 0.965 

for UA and Tyr sensing, respectively, suggesting the reliability of the 
sensor measurements.

Considering that sweat Tyr may be related to fitness condition41, 
we carried out controlled human performance trials on five physi-
cally untrained and five trained subjects (athletes) to validate the 
system (Fig. 5g,h). As expected, we observed lower sweat Tyr con-
centrations in trained athlete subjects (Fig. 5h). The sensor patch 
was able to dynamically monitor the Tyr intake and supplementa-
tion, as well as metabolism (Supplementary Fig. 37). As both tyro-
sine and uric acid are metabolic products of protein diets, system 
validations toward nutritional and metabolic monitoring were per-
formed through a protein intake study on three healthy individuals. 
Higher levels of both sweat UA and Tyr were observed in all the 
subjects after a high-protein diet (Supplementary Fig. 38).
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Evaluation of the wearable sensor for non-invasive gout man-
agement. The global burden of gout is increasing34. Gout is often 
characterized by chronic hyperuricemia, an elevated UA level 
exceeding the physiological saturation threshold31. Many risk fac-
tors, such as an increased intake of dietary purines and alcohol33, 
can lead to gout attacks (Fig. 6a). Monitoring serum UA is impor-
tant in personalized gout treatment and management (for example, 
urate-lowering therapy, flare-up preventions and dietary or nutri-
tional control)31. To evaluate our sensor for gout management, 
we performed a controlled purine-diet study in healthy male and 
female subjects. For subjects with overnight fasting (n = 6), both 
serum and sweat UA levels increased after a purine-rich diet (Fig. 
6b–e and Supplementary Figs. 39). The subsequent human study, 
carried out 2 h after a regular lunch, indicated that higher sweat UA 
levels were identified from the subjects with hyperuricemia (n = 4) 
and patients with gout (without medication, n = 6) than from the 
healthy subjects (n = 5), with a similar trend in serum UA levels 
(Fig. 6f and validated in Supplementary Fig. 40 with HPLC). This 

approach also shows promise for personalized dosage adjustment in 
urate-lowering therapy, as illustrated in Supplementary Fig. 41. The 
dynamic changes of sweat UA before and after a purine-rich diet 
over a 7-h period measured by the wearable sensor (Fig. 6g) closely 
resembled those of serum UA. We obtained a high correlation 
coefficient of 0.864 between sweat and serum UA concentrations  
(Fig. 6h), suggesting the potential use of sweat UA as a biomarker 
for gout management.

Discussion
Given the rich physiological information present in human sweat, 
the transition from traditional blood analysis to in situ sweat analy-
sis using wearable sensors could provide a non-invasive, continuous 
means to monitor metabolites and to guide personalized nutritional 
and metabolic management. However, current wearable sweat sen-
sors face several major challenges: (1) the lack of available highly 
sensitive wearable sensors that can monitor sweat analytes beyond 
a few electrolytes and metabolites via ion-selective or enzymatic  
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sensors; (2) the low in situ sensing accuracy owing to factors such 
as skin contamination, sweat evaporation and long refreshing time; 
and (3) the lack of correlation study between the sweat analyte level 
and a particular health condition.

Our laser-engraved multimodal sensor enables efficient micro-
fluidic sweat sampling, sensitive molecular sensing and multiplexed 
vital-sign sensing. Owing to its fast electron mobility, high current 
density and ultralarge surface area, the graphene-based chemi-
cal sensor achieves rapid and accurate detection of UA and Tyr in 
human sweat in  situ. Moreover, its manufacture is likely scalable 
as all three key modules (physical sensors, chemical sensors, and 
microfluidic module) are fabricated with a widely available CO2 
laser engraving approach. We have demonstrated sweat UA and Tyr 
detection using a wearable system and correlated our results with 
serum measurements in both healthy subjects and patients with 
gout. The high correlation coefficient obtained in our small pilot 
study indicates the promise of this approach for personalized moni-
toring of UA levels. Further studies may also assess its value in non-
invasive monitoring of gout, cardiovascular disease, type 2 diabetes 
and renal disease.
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Methods
Materials and reagents. UA, l-tyrosine, silver nitrate, iron chloride (III), 
dopamine hydrochloride, choline chloride, creatinine, pantothenic acid calcium 
salt, citrulline, pyridoxine and lactic acid were purchased from Alfa Aesar. 
Sodium thiosulfate pentahydrate, sodium bisulfite, tryptophan, leucine, alanine, 
isoleucine, methionine, valine, lysine, thiamine hydrochloride and serine were 
purchased from Sigma Aldrich. Potassium ferricyanide (III) was purchased from 
Acros Organics. Acetic acid, sodium acetate, sodium chloride, urea, l-ascorbic 
acid and dextrose (d-glucose) anhydrous, glycine, arginine, inositol, ornithine, 
aspartic acid, threonine, histidine, riboflavin, creatine, phenylalanine, nicotinic 
acid, folic acid and glutamic acid were purchased from Thermo Fisher Scientific. 
Medical adhesives were purchased from Adhesives Research. Polyimide film 
(75 μm thick) and PET (12 μm and 75 μm thick) were purchased from DuPont and 
McMASTER-CARR, respectively. Glassy carbon electrodes were purchased from 
CH Instruments, screen-printed carbon electrodes were purchased from Metrohm 
AG and gold electrodes were fabricated on a PET substrate by photolithography 
followed by 30 nm Cr/100 nm gold deposition via electron-beam evaporation and 
lift-off in acetone.

Fabrication and characterization of the LEG. For sensor patterning, a polyimide 
film (DuPont) was attached onto a supporting substrate in a 50-W CO2 laser cutter 
(Universal Laser System). The optimized parameters for the chemical sensor 
were power 6.3%, speed 5.5%, points per inch (PPI) 1,000 and raster mode. After 
graphene electrodes were scribed, silver was electrodeposited onto one pattern to 
function as the reference electrode at −0.2 mA for 100 s using a plating solution 
containing 250 mM silver nitrate, 750 mM sodium thiosulfate and 500 mM sodium 
bisulfite. The physical sensors had their contact pads scribed with the same 
parameters as the chemical sensors. For the active sensing area of the strain sensor, 
the optimized parameters were power 0.3%, speed 1.0% (1.4%, 1.2% and 1.0% 
were described as higher speed, medium speed and lower speed, respectively, in 
Fig. 3i and Supplementary Fig. 22), PPI 400, vector mode; for the active sensing 
area of the temperature sensor, the optimized parameters were power 1.5%, speed 
11%, PPI 1,000 and vector mode. Scanning electron microscopy (SEM) images 
were taken with a field emission scanning electron microscope (FEI Sirion). The 
surface properties of the laser-induced graphene were characterized by X-ray 
photoelectron spectroscopy (Escalab 250xi, Thermo Fisher Scientific).  
The Raman spectrum of graphene was recorded using a 532.8-nm laser with an 
inVia Reflex (Renishaw).

Characterization of the UA and Tyr sensors. All sensor characterizations were 
performed in 0.01 M acetate buffer saline (ABS) (pH 4.6 with the addition of 
50 mM NaCl) unless otherwise noted. DPV analysis was performed through an 
electrochemical workstation (CHI 832D). The detailed parameters were: range, 
0–0.9 V; incremental potential, 0.004 V; pulse amplitude, 0.05 V; pulse width, 
0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A/V. The selectivity study of the 
LEG was tested in ABS containing physiological concentrations of analytes. The 
dependence of the sensor response on pH was studied by DPV tests in 0.3× PBS 
with solution pHs adjusted by lactic acid.

Characterization of the strain and temperature sensors. The temperature sensor 
characterization was performed on a ceramic hot plate (Thermo Fisher Scientific) 
(Fig. 3f,g and Supplementary Fig. 21). The sensor response was recorded using 
a parameter analyzer (Keithley 4200A-SCS) and compared with the readings 
from an infrared thermometer (LASERGRIP 800; Etekcity). The response of the 
strain sensor was recorded using the parameter analyzer (Keithley 4200A-SCS) 
in a controlled temperature atmosphere (23 ± 1 °C). The accuracy of the strain 
sensor for heart rate and respiration rate monitoring was validated on a healthy 
subject with a commercially available vital-sign monitor (Masimo MightySat; 
Supplementary Fig. 24). Under repetitive bending under a 0.1% strain for 10,000 
cycles (performed using a Lynxmotion AL5D 4DOF Robotic Arm), the mechanical 
deformation effect on LEG-based electrode was evaluated (Supplementary Fig. 25).

Fabrication and characterization of microfluidic channels. A double-sided 
medical adhesive was attached to a substrate in the above-mentioned laser cutter. 
One layer of medical adhesive was cut through to make the channels and the 
reservoir, and another layer of medical adhesive was used to interface skin with 
inlets. The cylindrical reservoir has a radius of 2.13 mm, a thickness of 140 µm 
(medical tape) and its volume can thus be calculated as ~2 µl. The microfluidic 
channels have a depth of 140 µm and a width of 175 µm. Between two layers lies 
a thin (12 µm) and transparent PET film. The optimized laser cutter parameters 
were power 1%, speed 1.5%, PPI 1,000 for reservoir outline and channels, and 
power 2%, speed 1%, PPI 1,000 for inlet outlines, all in vector mode. The sweat 
rates were measured via optical image analysis on the basis of the photographs of 
a microfluidic patch taken sequentially on the different body parts of the subjects. 
The estimated sweat rates were calculated by the sweat volume changes divided 
by the time intervals. For Fig. 4f, black dye was dropped in the reservoir, and a 
transparent 75-µm PET film was used instead of the polyimide layer to prepare 
the microfluidics for better visibility. An assembled flow patch was attached onto 
a subject’s arm after an iontophoresis session implemented using a Model 3700 

Macroduct Sweat Collection System. The flow tests were done with a syringe pump 
(Thermo Fisher Scientific, 78-01001) and set concentrations of UA and Tyr in ABS. 
The DPV data were wirelessly transmitted to a laptop computer and automatically 
converted to concentration via custom-developed software.

Refreshing time analysis and simulations. A ballpark estimate of the 
concentration refreshing time Tc can be obtained by considering the mass balance 
of a standard well-mixed model: dC/dt + (C − Ci)Q/Vr = 0, where Ci and Q denote, 
respectively, the new solute concentration and total flow rate into the reservoir, 
and Vr represents the reservoir volume. This simple ordinary differential equation 
can be solved analytically to obtain the solute concentration in the reservoir 
as a function of time t, C tð Þ ¼ Ci � Ci � C0ð Þe�Qt=Vr

I
, where C0 is the initial 

concentration in the reservoir. Hence, the refreshing time taken for the reservoir 
to reach a concentration of kCi can be readily calculated as Tc ¼ Vr

Q ln 1�C0=Ci

1�k

I
. For 

an experimentally measured sweat rate of Q = 1.5 µl min−1 and concentration 
change from C0 = 20 µM to Ci = 80 µM, we estimate that the designed reservoir 
volume Vr = 2 mm3 leads to a refreshing time Tc ≈ 2.7 min to reach k = 90% of the 
new concentration. This simple analysis provides an order of magnitude estimate 
of the required refreshing time by assuming perfect mixing. To obtain more 
realistic estimates, a three-dimensional model was created with the same geometry 
of the device. The mass transport process was simulated using a finite-element 
software COMSOL Multiphysics by numerically solving the Stokes equation for an 
incompressible flow

∇p ¼ μ∇2v; ∇  v ¼ 0

coupled with the convection-diffusion equation

∂C
∂t

þ v  ∇C ¼ D∇2C

Here p and v denote, respectively, pressure and flow velocity, whereas µ 
and D denote, respectively, solvent viscosity and solute diffusivity. The Stokes 
equation is applicable here because the Reynolds number is on the order of 10−2 
for this microfluidic device. The solute concentration in the chamber is tracked 
by computing the average concentration over the bottom surface of the chamber. 
A flow rate of 0.15 µl min−1 is prescribed at each inlet, with the no-slip boundary 
condition on all channel walls. The simulated refreshing time as a function of 
the number of inlets is displayed in Fig. 4c. The refreshing time decreases as the 
number of inlets increases; for ten inlets with a total inlet flow rate of 1.5 µl min−1, 
the simulated 90% refreshing time is ~2.5 min, slightly less than the ballpark 
estimate on the basis of perfect mixing (~2.7 min). In Fig. 4d, the time evolution 
of the average concentration under different total inlet flow rates is displayed. In 
Fig. 4e, the concentration distribution over the bottom surface of the chamber 
is displayed at different time instances. Similarly, numerical simulation was 
performed on the basis of the actual design of the microfluidic module used in this 
work (Supplementary Fig. 27).

Signal conditioning, processing and wireless transmission. At the core 
of the system lied an STM32L432 ultralow-power ARM Cortex-M4 32-bit 
microcontroller with a built-in 12-bit ADC (Fig. 1e). The microcontroller was 
programmed with the ST-link/v2 in-circuit debugger and programmer. For a DPV 
scan, the microcontroller controlled the DAC8552 digital-to-analog converter 
through the serial peripheral interface (SPI) protocol to output a steady reference 
potential for the reference electrode, and a dynamic working potential for the 
working electrode. A fourth-order low-pass filter further stabilized the reference 
potential. The analog circuitry for the filter, potentiostat interface and TIA are 
shown in Supplementary Fig. 7. The resulting current through the working 
electrode was amplified and converted to voltage by the TIA, then read by the ADC 
peripheral of the microcontroller. The 12-bit ADC had a high sample rate of five 
million samples per second, allowing precise and time-accurate measurements 
by taking averages. The default incremental potential of the DPV scan is 0.004 V 
unless otherwise noted, which leads to a scan cycle of 90 s. The potential steps 
could be increased to obtain short scan cycles (Supplementary Figs. 17 and 30). 
The microcontroller was also able to measure the resistance of the vital-sign 
sensors through voltage divider circuits and the built-in ADC. The acquired 
multimodal data were wirelessly transmitted via Bluetooth to the user device and 
further analyzed via custom-developed software. As the output of the electronic 
system is electrical potential, the wirelessly collected raw signals were plotted in 
mV in the figures.

Power delivery. The entire system operated at 3.3 V, enabling a simple and efficient 
design. A single LD39050 voltage regulator converted the power from a 3.7 V Li-
ion battery to a stable 3.3 V. During data acquisition and transmission, the FPCB 
drew 27 mA from the 3.7 V Li-ion battery. Using a 400-mAh battery, the device 
could perform approximately 592 full cycles of the 90-s DPV measurements.

Human subject recruitment. The validation and evaluation of the sweat 
sensor were performed using human subjects in compliance with all the ethical 
regulations under a protocol (ID 19-0892) that was approved by the Institutional 
Review Board (IRB) at California Institute of Technology. The participating 

Nature Biotechnology | www.nature.com/naturebiotechnology

Yu Song
高亮

Yu Song
高亮

Yu Song
高亮

Yu Song
高亮

Yu Song
高亮

http://www.nature.com/naturebiotechnology


Articles Nature BiotecHnoLogy

subjects (age range 18–65) were recruited from the California Institute of 
Technology campus and the neighboring communities through advertisement. All 
subjects gave written informed consent before participation in the study.

On-body system validation. To validate the multimodal sweat sensor, we 
conducted constant-load cycling exercise on five physically trained and five 
physically untrained subjects (all male). The trained subjects (athletes from 
California Institute of Technology sport teams) exercised regularly for at least 
9 h per week while the untrained subjects had an average of 1 h of exercise per 
week. The subjects reported to the lab with overnight fasting and were given a 
standardized protein drink (Fairlife, Core Power Elite). Two hours after the protein 
consumption, the subjects’ foreheads and necks were cleaned with alcohol swabs 
and gauze before the sensor patches were placed on the body. A stationary exercise 
bike (Kettler Axos Cycle M-LA) was used for cycling trials. The subjects cycled at 
60 rpm for 40 min. During the on-body trial, the data from the sensor patches were 
wirelessly sent to the user interface via Bluetooth. When the subjects started biking, 
the sensor system continuously acquired and transmitted physical sensor data at a 
rate of 10 Hz. Every minute, the electronic system initiated a transient voltage bias 
between the reference and working electrodes. If the bias triggered a current above 
an experimentally determined threshold, the system would start the first 90-s DPV 
scan. The DPV scan was repeated every 5 min until the subject stopped biking. 
After being calibrated using simultaneously collected skin temperature information 
in the preprogrammed microcontroller (Fig. 3l), the acquired molecular data were 
wirelessly transmitted via Bluetooth to the user device, and further converted 
to the concentration levels on the basis of the calibration curves in Fig. 5e,f. The 
respiration rate was calculated through spectral analysis by performing fast Fourier 
transform on the respiration sensor data (Supplementary Fig. 32). The frequency 
corresponding to the largest amplitude in the frequency spectrum was converted 
to breaths per minute. Meanwhile sweat samples were collected periodically from 
the forehead and neck of the subjects using centrifuge tubes and then centrifuged 
at 6,000 rpm for 15 min. The sweat samples were then frozen at −20 °C for further 
testing and validation via electrochemical test with the LEG-CS, HPLC analysis 
and the colorimetric assay kits. For the tyrosine supplementation study, the subject 
consumed 1.5 g tyrosine 6 min after an iontophoresis session implemented using 
a Model 3700 Macroduct Sweat Collection System. Over a 50-min period, the 
subject’s sweat was sampled periodically and analyzed by the sensor patch while 
the sweat flow rate was estimated by the sweat volume in each sampling period 
(Supplementary Fig. 37).

HPLC analysis for sensor validation and sample analysis. HPLC tests of UA 
and Tyr were done on HP Agilent 1100 HPLC using an Agilent Eclipse XDB-C18 
5 µm 3 × 250 mm column. Tests of UA and Tyr were done with gradient methods 
and the gradient profiles are shown in Supplementary Tables 3 and 4. Detection 
wavelengths for UA and Tyr were 245 nm and 274 nm, respectively. Retention times 
were ~9 min and ~4 min for UA and Tyr, respectively. Sweat samples and serum 
samples were diluted to around 400 µl, both with water. The selectivity study of 
the HPLC was performed by spiking a constant concentration of UA or Tyr with 
different sweat analytes with concentrations listed in Supplementary Table 2.

Colorimetric assays for sensor validation and sample analysis. For UA analyses, 
the QuantiChrom Uric Acid Assay kit (BioAssay Systems) was used for the 
determination of UA levels in sweat. The kit quantifies UA in the sample by 
utilizing 2,4,6-tripyridyl-s-triazine, which forms a blue-colored complex with iron 
in the presence of UA. Five microliters of samples and standard solutions were 
transferred in triplicate wells of a clear-bottom 96-well plate, followed by addition 
of 200 µl of working reagents. The microplate was incubated for 30 min at room 
temperature. The absorbance at a wavelength of 620 nm was measured using a 
microplate photometer (Multiskan FC) and the concentration of uric acid was 
calculated according to the standard curve (n = 3). Standard kits and solutions 
were kept at 4 °C and −20 °C unless otherwise used. For Tyr analyses, the Tyrosine 
Assay kit (Cell Biolabs) was used for the determination of Tyr levels in sweat. The 
kit quantifies the colorimetric intermediate formed via enzymatic oxidation of Tyr. 
Fifty microliters of samples and standard solutions were transferred in triplicate 
wells of a clear-bottom 96-well plate, followed by addition of 50 µl of working 
reagents. The microplate was incubated for 10 min at room temperature on an 
orbital shaker. The absorbance at a wavelength of 450 nm was measured using 
a microplate photometer (Multiskan FC) and the concentration of tyrosine was 
calculated according to the standard curve (n = 3).

Human trials for gout management. To evaluate the sensor performance toward 
gout management, a purine-rich diet study was performed on both healthy male 
and female subjects (Fig. 6b–e and Supplementary Fig. 39). The subjects reported 
to the lab after overnight fasting. Fresh capillary blood samples were collected 
using a finger-prick approach before the exercise. After cleaning the fingertip with 
alcohol wipe and allowing it to air dry, the skin was punctured with CareTouch 
lancing device. Samples were collected with centrifuge tubes after wiping off the 
first drop of blood with gauze. After the 90-min standardized clotting procedure 

finished, serum was separated by centrifuging at 6,000 rpm for 15 min, and 
instantly stored at −20 °C for HPLC analysis. A 20-min constant-load cycling 
exercise was immediately conducted on the subjects after the blood collection 
with the sweat information collected by the sensor patch from the forehead. The 
subjects were then given a purine-rich diet (250 g of canned sardines) followed 
by a 2-h rest. The blood collection and the cycling trial were then repeated. The 
plotted data for this study are based on the first two successive complete DPV 
measurements. To further characterize the sweat UA sensing, six patients with 
gout, four subjects with hyperuricemia (without history of gout attack) and five 
healthy subjects were recruited (Fig. 6f). It should be noted that all of the six 
patients with gout (three currently under urate-lowering therapy, three not on 
any medical therapy) didn’t receive any urate-lowering medication for at least 10 h 
ahead of the study. The sweat samples and blood samples were collected 2 h after 
their regular lunch and tested by the sensor patches and HPLC, respectively (same 
procedure as the after meal test in the meal challenge study). During the on-body 
test, sweat samples were collected periodically from the subjects using centrifuge 
tubes and then frozen at −20 °C for further sensor validation via HPLC analysis. 
For dynamic monitoring of UA before and after purine intake (Fig. 6g), a healthy 
subject underwent a finger-prick blood collection followed by a 20-min cycling 
test after overnight fasting, then consumed canned sardines. The blood collection 
and sweat test were repeated periodically every hour until 6 h after the intake. The 
collected blood samples were analyzed with HPLC. To investigate the medication 
influence on serum and sweat UA levels, a patient with gout underwent the sweat 
and blood sample tests on two days: on one day the patient received urate-lowering 
medication (allopurinol) 2 h before the test and on the other day the patient did 
not take medication for 24 h before the test. The sweat samples and blood samples 
were collected 2 h after their regular lunch and tested by the sensor patches and 
HPLC, respectively (same procedure as the after meal test in the meal challenge 
study). The correlation plot in Fig. 6h was based on data obtained from 15 subjects 
(including six patients with gout). The Pearson correlation coefficient was acquired 
through linear regression in Origin 2018 (n = 46).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon request.

Code availability
The custom code used to program microcontroller is available from the 
corresponding author upon request.
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